Cathelicidin-related antimicrobial peptide (CRAMP) is toxic during neonatal murine influenza virus infection.

阅读:9
作者:Rao Abhishek S, Ugwu Nneka, Onufer Abigail P, Kumova Ogan, Carey Alison J
Respiratory viral infections are a major contributor to mortality in children under 5 years of age, and disproportionately affect preterm neonates. Previously, using our established 3-day-old neonatal murine model of influenza virus infection, we demonstrated that treatment of neonatal mice with intranasal Lactobacillus rhamnosus GG (LGG) prior to influenza viral infection improved survival. Transcriptional analysis revealed expression of the mouse cathelicidin-related antimicrobial peptide (CRAMP, encoded by CRAMP) was downregulated in LGG-treated neonates. Mouse CRAMP is a key effector protein secreted by infected epithelial cells and resident and infiltrating immune cells, but the role of CRAMP in neonatal defense to respiratory viruses is unknown. Neonatal mice with a deleted CRAMP gene (CRAMP-/-) were intranasally infected with influenza virus. CRAMP-/- neonates had improved survival over C57BL/6 neonates after influenza viral infection (75% vs. 14%, p < 0.05). Next, immune cell recruitment to the lung of infected neonates was determined. Surprisingly, at 3-days postinfection, there was increased recruitment of neutrophils, inflammatory monocytes, and alveolar macrophages, coupled with increased proinflammatory cytokine and chemokine production in CRAMP-/- compared to C57BL/6 neonates. However, this changed over the first week of infection. C57BL/6 neonatal mice increased CRAMP production significantly, in direct contrast to their adult counterparts. Inflammatory cytokine production increased that indicated CRAMP amplified the innate immune response later in the infection. Furthermore, we identified pulmonary nonimmune cells as an important source of increased CRAMP levels as the infection progressed and CRAMP production drove mortality. These insights emphasize the age-specific role of CRAMP in influenza viral pathogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。