Intracellular trafficking of furin enhances cellular intoxication by recombinant immunotoxins based on Pseudomonas exotoxin A.

阅读:6
作者:Grossman Brian D, Sanford Jack D, Zhu Yuyi, Zeller Cynthia B, Weldon John E
Furin is a mammalian serine protease with important roles in cellular homeostasis and disease. It cleaves and activates numerous endogenous and exogenous substrates, including the SARS-CoV-2 viral spike protein and protein toxins such as diphtheria toxin and Pseudomonas exotoxin A (PE). Recombinant immunotoxins (RITs) are toxin conjugates used as cancer therapeutics that connect tumor-directed antibodies with toxins for targeted cell killing. RITs based on PE have shown success in treating a variety of cancers, but often suffer from safety and efficacy concerns when used clinically. We have explored furin as a potential limiting factor in the intoxication pathway of PE-based RITs. Although the furin has widely recognized importance in RIT intoxication, its role is incompletely understood. Circumstantial evidence suggests that furin may act as a transporter for RITs in addition to its role of activation by cleavage. Here, we describe the creation of a CRISPR-engineered furin-deficient HEK293 cell line, ΔFur293. Using ΔFur293 and derivatives that express mutant forms of furin, we confirm the importance of furin in the PE RIT intoxication pathway and show that furin trafficking has a significant impact on RIT efficacy. Our data support the hypothesis that furin acts as a transporter during RIT intoxication and suggest furin as a target for modification to improve the effectiveness of RITs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。