Development of a cost-effective high-throughput mid-density 5K genotyping assay for germplasm characterization and breeding in groundnut.

阅读:12
作者:Pandey Manish K, Sharma Vinay, Khan Aamir W, Joshi Pushpesh, Gangurde Sunil S, Bajaj Prasad, Janila Pasupuleti, Chitikineni Annapurna, Bhat Ramesh, Motagi Babu N, Sangh Chandramohan, Radhakrishnan Thankappan, Bera Sandip K, Gorjanc Gregor, Gujjula Krishna Reddy, Hall Nathan, Carrasco Claudio D, Arjun Kandalam, Chandram Srinivas, Varshney Rajeev K
Groundnut (Arachis hypogaea L.), also known as peanut, is an allotetraploid legume crop composed of two different progenitor sub-genomes. This crop is an important source for food, feed, and confectioneries. Leveraging translational genomics research has expedited the precision and speed in making selections of progenies in several crops through either marker-assisted selection or genomic selection, including groundnut. The availability of foundational genomic resources such as reference genomes for diploid progenitors and cultivated tetraploids, offered substantial opportunities for genomic interventions, including the development of genotyping assays. Here, a cost-effective and high-throughput genotyping assay has been developed with 5,081 single nucleotide polymorphisms (SNPs) referred to as "mid-density assay." This multi-purpose assay includes 5,000 highly informative SNPs selected based on higher polymorphism information content (PIC) from our previously developed high-density "Axiom_Arachis" array containing 58,233 SNPs. Additionally 82 SNPs associated with five resilience and quality traits were included for marker-assisted selection. To test the utility of the mid-density genotyping (MDG) assay, 2,573 genotypes from distinct sets of breeding populations were genotyped with the 5,081 SNPs. PIC of the SNPs in the MDG ranged from 0.34 to 0.37 among diverse sets. The first three principal components collectively explained 82.08% of the variance among these genotypes. The mid-density assay demonstrated a proficient ability to distinguish between the genotypes, offering a high level of genome-wide nucleotide diversity. This assay holds promise for possible deployment in the identification of varietal seed mixtures, genetic purity within gene bank germplasms and seed systems, foreground and background selection in backcross breeding programs, genomic selection, and sparse trait mapping studies in groundnut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。