TMT-based quantitative proteomics analysis of defense responses induced by the Bph3 gene following brown planthopper infection in rice.

阅读:3
作者:Qing Dongjin, Chen Weiwei, Li Jingcheng, Lu Baiyi, Huang Suosheng, Chen Li, Zhou Weiyong, Pan Yinghua, Huang Juan, Wu Hao, Peng Yujing, Peng De, Chen Lei, Zhou Yan, Dai Gaoxing, Deng Guofu
BACKGROUND: The brown planthopper (BPH) is an economically significant pest of rice. Bph3 is a key BPH resistance gene. However, the proteomic response of rice to BPH infestation, both in the presence and absence of Bph3, remains largely unexplored. RESULTS: In this study, we employed tandem mass tag labeling in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in rice samples. We detected 265 and 125 DEPs via comparison of samples infected with BPH for 2 and 4 days with untreated samples of the BPH-sensitive line R582. For the Bph3 introgression line R373, we identified 29 and 94 DEPs in the same comparisons. Bioinformatic analysis revealed that Bph3 significantly influences the abundance of proteins associated with metabolic pathways, secondary metabolite biosynthesis, microbial metabolism in diverse environments, and phenylpropanoid biosynthesis. Moreover, Bph3 regulates the activity of proteins involved in the calcium signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction. CONCLUSIONS: Our results indicate that Bph3 enhances the resistance of rice to BPH mainly by inhibiting the down-regulation of proteins associated with metabolic pathways; calcium signaling, the MAPK signaling pathway, and plant hormone signal transduction might also be involved in BPH resistance induced by Bph3.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。