Neophytadiene, a Plant Specialized Metabolite, Mediates the Virus-Vector-Plant Tripartite Interactions.

阅读:3
作者:Shi Xiao-Bin, Yue Hao, Wei Yan, Preisser Evan L, Wang Pei, Du Jiao, Xia Ji-Xing, Li Kai-Long, Yang Xin, Chen Jian-Bin, Zhang Song-Bai, Zhang Zhan-Hong, Zhou Xu-Guo, Zhang De-Yong, Liu Yong
While interactions between viruses and their vectors, as well as between viruses and host plants, have been extensively studied, the genetic mechanisms underlying tripartite interactions remain largely unknown. In this study, phenotypic assays are integrated with molecular biology and functional genomic approaches to elucidate the tripartite interactions involving tomato chlorosis virus (ToCV), a major threat to tomato production worldwide, the whitefly, Bemisia tabaci, an insect vector, and host plants. ToCV infection induces the production of a chlorophyll degradation product that acts as a volatile attractant for whiteflies. Furthermore, the suppression of Lhca4, a gene encoding subunit of light-harvesting complex I in host plants, by the P9 protein of ToCV leads to chlorophyll degradation and neophytadiene biosynthesis. Overexpression of Lhca4 reduced chlorophyll production and ToCV infection. Furthermore, OBP2, an odorant-binding protein from B. tabaci, capable of binding to neophytadiene is identified. Suppression of BtOBP2 impaired vector's subsequent preference for ToCV-infected plants. The results not only reveal the genetic underpinnings, including ToCV P9, host plant Lhca4, and whitefly BtOBP2, governing the virus-vector-plant interactions, but also highlight neophytadiene, a specialized metabolite in host plants, as a mediator of intricate multitrophic interactions, suggesting new avenues for managing plant virus vectored by insects.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。