Chronic Probing of Deep Brain Neuronal Activity Using Nanofibrous Smart Conducting Hydrogel-Based Brain-Machine Interface Probes.

阅读:4
作者:Zargarian Seyed Shahrooz, Rinoldi Chiara, Ziai Yasamin, Zakrzewska Anna, Fiorelli Roberto, Gazińska Małgorzata, Marinelli Martina, Majkowska Magdalena, Hottowy Paweł, Mindur Bartosz, Czajkowski Rafał, Kublik Ewa, Nakielski Paweł, Lanzi Massimiliano, Kaczmarek Leszek, Pierini Filippo
The mechanical mismatch between microelectrode of brain-machine interfaces (BMIs) and soft brain tissue during electrophysiological investigations leads to inflammation, glial scarring, and compromising performance. Herein, a nanostructured, stimuli-responsive, conductive, and semi-interpenetrating polymer network hydrogel-based coated BMIs probe is introduced. The system interface is composed of a cross-linkable poly(N-isopropylacrylamide)-based copolymer and regioregular poly[3-(6-methoxyhexyl)thiophene] fabricated via electrospinning and integrated into a neural probe. The coating's nanofibrous architecture offers a rapid swelling response and faster shape recovery compared to bulk hydrogels. Moreover, the smart coating becomes more conductive at physiological temperatures, which improves signal transmission efficiency and enhances its stability during chronic use. Indeed, detecting acute neuronal deep brain signals in a mouse model demonstrates that the developed probe can record high-quality signals and action potentials, favorably modulating impedance and capacitance. Evaluation of in vivo neuronal activity and biocompatibility in chronic configuration shows the successful recording of deep brain signals and a lack of substantial inflammatory response in the long-term. The development of conducting fibrous hydrogel bio-interface demonstrates its potential to overcome the limitations of current neural probes, highlighting its promising properties as a candidate for long-term, high-quality detection of neuronal activities for deep brain applications such as BMIs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。