Assessment of the influence of 660 and 808-nm PBM treatments on mitochondrial oxygen consumption of MG-63 osteoblast: a 3D cell culture study

评估 660 nm 和 808 nm 光生物调节 (PBM) 治疗对 MG-63 成骨细胞线粒体耗氧量的影响:一项三维细胞培养研究

阅读:1
作者:Simone Sleep ,Deanne Hryciw ,Jennifer Gunter ,Praveen Arany ,Nifty Tomy ,Roy George
This study explores the dose-dependent effects of 660-nm and 808-nm photobiomodulation (PBM) on mitochondrial oxygen respiration rate activity in MG-63 osteoblast cells using an innovative 3D in vitro spheroid model. MG-63 osteoblast cells were grown to 80% confluence and seeded in fish gelatin hydrogel (LunaGel™) to form 3D spheroids within 3-7 days. Spheroids were seeded on Seahorse microplates and incubated in a LunacrossLinker™ (visible light crosslinking system) for 2 min to give hydrogel a mid-stiffness of 3.5 kPa. Cells were exposed to PBM either 660-nm or 808-nm at panel setting of 5 J/cm(2) and 15 J/cm(2) and then assessed immediate (15 min before analysing) and 24 h time points. Mitochondrial activity was determined using an XFe96 Seahorse analyzer. Data distribution was assessed, and parametric or non-parametric tests and compared the mitochondrial respiratory capacity across different experimental conditions. The study indicated that 660-nm and 808-nm PBM could modulate mitochondrial functions in osteoblasts. The maximal respiratory rate for the fluency assessed at 808-nm wavelength was increased when cells were assessed immediate post. Interestingly, the 660-nm PBM-treated cells showed a decrease in oxygen consumption rate (OCR) at the basal and maximal bioenergetic state at all time points (immediate and 24 h.) and fluency compared to the untreated control. The effects of 660-nm and 808-nm wavelengths on osteoblast mitochondrial function suggest that PBM demonstrates differential modulation of osteoblast metabolism and bioenergetics depending on the wavelength. These findings have practical implications in both research and clinical settings, offering insights into selecting specific wavelengths for therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。