Photodynamic therapy (PDT) and photothermal therapy (PTT) offer the advantages of precise temporal and spatial selectivity in cancer treatment, minimizing damage to normal cells while effectively eliminating tumor cells. However, the therapeutic efficacy of phototherapy is always hindered by challenges such as hypoxia and tumor heat resistance. Herein, a pH-responsive metal-drug nanocomplex (denoted as PAFH) comprising hypericin (HYP), apigenin (APG), polyvinylpyrrolidone (PVP), and Fe(3+) is developed to enhance the therapeutic efficacy of PDT and PTT. The PAFH nanocomplex exhibits photothermal properties under 808Â nm laser irradiation, which can disassociate in response to the acidic tumor microenvironment and the temperature increase induced by PTT, thereby eventually triggering the on-site release of APG and HYP. The released APG inhibits the synthesis of heat shock protein HSP-90, facilitating the PAFH-mediated PTT to kill tumor cells at mild temperature. Additionally, APG alleviates hypoxia and then regulates the expression of hypoxia-inducible factor HIF-1ð¼, increasing cellular oxygen levels to produce singlet oxygen for enhanced HYP-mediated PDT and inhibiting tumor metastasis. Ultimately, this sophisticated nanosystem represents an advanced strategy to promote PDT and PTT by mitigating tumor hypoxia and counteracting tumor heat resistance, significantly improving therapeutic efficacy for precise cancer therapy.
Active Iron-Drug Nanocomplexes Improve Photodynamic and Photothermal Cancer Therapy by Mitigating Tumor Hypoxia and Counteracting Tumor Heat Resistance.
阅读:3
作者:Yin Yuying, Wong Ka Hong, Wen Liewei, Chen Meiwan
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Apr;14(9):e2404485 |
| doi: | 10.1002/adhm.202404485 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
