Overcoming target interference in bridging anti-drug antibody (ADA) assay by optimizing sample treatment.

阅读:4
作者:Ye Sally, Gambardella Janice, Zaslavskaia Lioudmila, Kim Daniel, Konovalov Andrey, Kostuk Stephanie, Samareh Afsari Hamid, Place Corina, Coble Kelly, Johnson Alison J
BACKGROUND: Drug bridging immunoassays are widely employed as the standard approach for detecting anti-drug antibodies (ADAs) in the development of new biological entities. A major challenge in these assays is mitigating target interference, particularly when the soluble target exists in dimeric forms, which can result in false positive signals and compromise assay specificity. RESEARCH DESIGN AND METHODS: We developed sensitive and robust ADA assays capable of overcoming target interference to detect antibodies against BI X in both cynomolgus monkey (cyno) plasma and human serum matrices. This was achieved through the implementation of simple sample treatment techniques, specifically, acidification using a panel of different acids, to disrupt dimeric target interactions and minimize the interference. RESULTS: Optimization of the acid dissociation and subsequent neutralization steps significantly reduced target interference in both cyno and human matrices. These improvements were achieved without the need for additional assay development or complex depletion strategies. CONCLUSIONS: Compared to previously reported methods for mitigating target interference, the acid panel treatment approach is simpler, more time-efficient, and cost-effective. This user-friendly strategy can be readily applied to eliminate soluble dimeric targets during ADA method development, particularly in cases where alternative methodologies are not feasible or applicable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。