High-Throughput Oxford Nanopore Sequencing Unveils Complex Viral Population in Kansas Wheat: Implications for Sustainable Virus Management.

阅读:3
作者:Ranabhat Nar B, Fellers John P, Bruce Myron A, Rupp Jessica L Shoup
Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021. Wheat leaves exhibiting virus-like symptoms were collected, total RNA was extracted, and cDNA libraries were prepared using a PCR-cDNA barcoding kit, then loaded onto ONT MinION flow cells. Sequencing reads aligned with cereal virus references identified eight wheat virus species. Tritimovirus tritici (wheat streak mosaic virus, WSMV), Poacevirus tritici (Triticum mosaic virus, TriMV), Bromovirus BMV (brome mosaic virus, BMV), as well as Emaravirus tritici, Luteovirus pavhordei, L. sgvhordei, Bymovirus tritici, and Furovirus tritici. Mixed infections involving two to five viruses in a single sample were common, with the most prevalent being WSMV + TriMV at 16.7% and WSMV + TriMV + BMV at 11.9%. Phylogenetic analysis revealed a wide distribution of WSMV isolates, including European and recombinant variants. A phylogenetic analysis of Emaravirus tritici based on RNA 3A and 3B segments and whole-genome characterization of Furovirus tritici were also conducted. These findings advance understanding of genetic variability, phylogenetics, and viral co-infections, supporting the development of sustainable management practices through host genetic resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。