RNA pseudouridylation is one of the most prevalent post-transcriptional modifications, occurring universally across all organisms. Although pseudouridines have been extensively studied in bacterial tRNAs and rRNAs, their presence and role in bacterial mRNA remain poorly characterized. Here, we used a bisulfite-based sequencing approach to provide a comprehensive and quantitative measurement of bacteria pseudouridines. As a proof of concept in E. coli, we identified 1,954 high-confidence sites in 1,331 transcripts, covering almost 30% of the transcriptome. Furthermore, pseudouridine mapping enabled the detection of differentially expressed genes associated with stress response that were unidentified using conventional RNA-seq approach. We also demonstrate that in addition to pseudouridine profiling, our approach can facilitate the discovery of previously unidentified transcripts. As an example, we identified a small RNA transcribed from the antisense strand of tRNA-Tyr which represses expression of distal genes. Finally, we mapped pseudouridines in oral microbiome samples of human subjects, demonstrating the broad applicability of our approach in complex microbiomes. Altogether, our work highlights the advantages of mapping bacterial pseudouridines and provides a tool to study posttranscription regulation in microbial communities.
Quantitative mapping of pseudouridines in bacteria RNA.
阅读:8
作者:Sharma Shikha, Woodworth Brendan, Yang Bin, Duan Ning, Pheko Mannuku, Moutsopoulos Niki, Emiola Akintunde
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 27 |
| doi: | 10.1101/2024.11.26.625507 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
