Immune Responses of Mango Callus Infected by Agrobacterium tumefaciens Inhibited Transformation.

阅读:3
作者:Shu Haiyan, Jewel Zilhas Ahmed, Faruk Omor, He Luqiong, Wei Qing, Zhan Rulin, Chang Shenghe
Mango is a vital fruit crop in tropical and subtropical regions, yet pests and diseases cause 30-70% production losses. Developing disease-resistant cultivars through transgenic methods could mitigate these issues. Agrobacterium-mediated callus transformation is a common genetic engineering approach, but successful transgenic mango plants from callus remain unreported due to severe browning and necrosis post-infection. We hypothesized that Agrobacterium-induced immune responses trigger callus death, hindering transformation. To improve efficiency, we engineered an Agrobacterium strain carrying the type III secretion system (T3SS) and effector gene AvrPto. Compared to controls, infected calluses exhibited elevated reactive oxygen species (ROS), along with up-regulated ROS-related, gallic acid biosynthesis, and defense genes. Calluses infected with T3SS-AvrPto-harboring Agrobacterium showed delayed browning and necrosis versus those infected with the empty vector (NV). The transformation rate with Agrobacterium (T3SS-AvrPto-EGFP) reached 1.6%, while Agrobacterium (NV-EGFP) failed entirely. These findings demonstrate that T3SS and AvrPto enhance mango transformation efficiency, offering a promising strategy for breeding multi-resistant varieties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。