Management succinate release through SDHA by G protein-coupled receptor 91 signal, TRAP1, and SIRT3 regulation in lung cancer cells by NAR nanoparticles.

阅读:23
作者:Ragab Eman M, Khamis Abeer A, Mohamed Tarek M, El Gamal Doaa M
BACKGROUND: Cancer cells display oxidative metabolic dysregulation to fulfill their bioenergy requirements. Specifically, efforts were made to regulate the metabolite succinate and its negative effects as an inducer for neoplasm invasion and metastasis. METHODS: Binding affinity of naringenin (NAR) to mitochondria complex II (CΙΙ) subunits, sirtuin3 (SIRT3), tumor necrosis factor associate protein 1(TRAP1), and succinate receptor (SUCNR1) was studied by molecular docking. NAR nanoparticles (NARNPs) were synthesized and characterized by IR, X-ray, UV, drug release, zeta potential, TEM, and SEM. The IC(50) was evaluated in normal mice, normal fibroblast, and A549 cells by using the MTT technique. Moreover, the impact of NAR and NARNPs against 5-FLU on CΙΙ activity, SOD activity, and mitochondrial swelling was assessed. Apoptosis was also assessed using the flow cytometry method. While the expression of relevant genes such as SDHC, D, SIRT-3, TRAP1, SUCNR1, and ERK1/2 genes was determined by using RT-qPCR analysis. Western blot evaluated PI3K, NF-κB against β-actin. RESULTS: Theoretically, the binding affinity between NAR & SDHC, D, SIRT-3, TRAP1, and SUCNR1 proteins was stronger. Cytotoxic effects of NAR and NARNPs were evaluated. Also, the activity of SDH C, and D was inhibited more than SDH A, and B activity in the A549 than normal cell lines (NARNPs < NAR < 5-FLU), This was accompanied by downregulation of SDH C, D, TRAP1, SUCNR1, and ERK1/2 genes expression, and upregulation of SIRT-3 gene expression. Additionally, NF-κB and PI3K protein expression declined. On the other hand, there was a significant increase in apoptotic effects with mitochondria enlargement (NARNPs > NAR > 5-FLU) in A549 compared with normal cells. IN CONCLUSION: Controlling succinate by SDH parallel with SUCNR1 signal regulation by NARNPs will be a novel understanding mechanism and candidate for therapeutic target in lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。