Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC). By monitoring cytoplasmic Ca(2+) in a microvascular EC model, we compared the calcium responses evoked by three structurally related compounds: caffeic acid phenethyl ester, neochlorogenic acid and caffeic acid. Only CAPE induced rapid and transient calcium responses at nanomolar concentrations together with a gradual increase in cytoplasmic sodium levels, suggesting the activation of a non-selective cationic permeation at the plasma membrane. Electrophysiological as well as pharmacological, and RNA silencing assays confirmed the involvement of TRPV1 in the recognition of CAPE by ECs. Finally, we demonstrated that Ca(2+) influx by TRPV1 was necessary for recording CAPE-induced cytoplasmic redox changes, a phenomenon captured in real-time in ECs expressing the HyPer biosensor. Our data depict a molecular mechanism behind the antioxidant effect of CAPE in endothelial cells, connecting the activation of TRPV1 ion channels, cytoplasmic calcium increase, and a reduction of disulfide bonds on a redox biosensor. This phenomenon occurs within seconds to minutes and contributes to a better understanding of the mechanisms underlying the vasodilatory effect of CAPE and other compounds that interact with TRPV1 in the vascular bed.
The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.
阅读:7
作者:Hidalgo Miltha, Railef Bárbara, RodrÃguez Vania, Navarro Carolina, Rubio Vanessa, Meneses-Pacheco Jorge, Soto-Alarcón Sandra, Kreindl Christine, Añazco Carolina, Zuñiga Leandro, Porras Omar
| 期刊: | Redox Biology | 影响因子: | 11.900 |
| 时间: | 2025 | 起止号: | 2025 Mar;80:103507 |
| doi: | 10.1016/j.redox.2025.103507 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
