Radiation-induced skin injury is a poorly understood complication affecting cancer patients who undergo radiotherapy, with no current therapies able to prevent or halt its progression to debilitating radiation-induced skin fibrosis (RISF). Addressing the need for clinically relevant human models, this study developed and characterized a human ex vivo skin model that recapitulates the temporal molecular processes of cutaneous radiation injury, as demonstrated through bulk RNA-sequencing and tissue validation studies. Human skin explants subjected to ionizing radiation demonstrated rapid induction of DNA double-strand breaks, followed by a robust, p53-driven transcriptional program involving genes related to cell cycle arrest, apoptosis, and senescence. Over time, the irradiated skin exhibited increasing activation of pro-fibrotic pathways, notably epithelial-mesenchymal transition and TGFβ1-mediated signaling. This resulted in upregulation of classic fibrosis markers such as COL1A1, FN1, and increased collagen thickness. Importantly, regulators of the p53 axis, MDM2 and miR-34a, was observed, implicating these factors as potential therapeutic targets to modulate the balance between repair of radiation injury and pathologic fibrosis. Transcriptome analysis of irradiated and non-irradiated breast skin from post-mastectomy patients showed notable concordance of p53 and pro-fibrotic gene signatures comparable to the ex vivo model, underscoring its translational relevance. This work provides a platform for identifying early biomarkers and testing therapeutic strategies to prevent or mitigate cutaneous radiation toxicities, including RISF, beginning with elucidating the dynamic interplay between the p53-mediated DNA damage response and the onset of fibrosis following radiation. Ultimately, this work aims to improve long-term skin health and quality of life for cancer patients.
A human ex vivo model of radiation-induced skin injury reveals p53-driven DNA damage signaling and recapitulates a TGFβ fibrotic response.
阅读:8
作者:Dodson Caroline, Bilik Sophie M, DiBartolomeo Gabrielle, Pachalis Hannah, Siegfried Lindsey, Johnson Jordan A K, Thaller Seth R, Pastar Irena, Tomic-Canic Marjana, Griswold Anthony J, Stone Rivka C
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 8 |
| doi: | 10.1101/2025.06.04.657901 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
