Alanine aminotransferase contributes to hypoxia sensitivity and dormancy in barley seeds.

阅读:4
作者:Farquharson Lochlen G H, Samanfar Bahram, Khanal Raja, Brauer Elizabeth K
Seed dormancy is regulated by a combination of developmental and environmental cues to ensure seedling survival in a changing environment. In barley (Hordeum vulgare L.), the SD1 and SD2 (where SD is standard deviation) loci regulate dormancy and pre-harvest sprouting (PHS), though their role in physiological development remains unclear. Malting barley production in Eastern Canada is currently limited due to the high potential for PHS in the region. To understand what genetic loci might be influencing dormancy in Eastern Canadian barley, we evaluated the LegCi biparental population, which was derived from the Léger variety. A quantitative trait loci close to the SD1 on chromosome 5 locus was identified as regulating germination in LegCi, suggesting that the alanine aminotransferase gene (AlaAT1), which underlies dormancy regulation at SD1, influences dormancy in LegCi. Alanine aminotransferases influence energy production in the cell, particularly during nitrogen limitation or oxygen deprivation. LegCi genotypes segregating for dormancy at the SD1 allele showed no differences in abscisic acid or GA-dependent gene expression during grain fill but varied for hypoxia-induced gene expression. Hypoxia suppressed germination in all genotypes but had a significantly higher impact on genotypes with the dormant AlaAT1 relative to genotypes with the non-dormant AlaAT1. This trend was not dependent on the presence of the hull, suggesting that signaling or metabolism inside the germinating seed is influencing hypoxia sensitivity. This work suggests that the non-dormant allele of SD1 is associated with reduced hypoxia stress sensitivity to promote germination. Further work is needed to determine if this trend extends to other barley genotypes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。