Iterative deep learning design of human enhancers exploits condensed sequence grammar to achieve cell-type specificity.

阅读:5
作者:Yin Christopher, Castillo-Hair Sebastian, Byeon Gun Woo, Bromley Peter, Meuleman Wouter, Seelig Georg
An important and largely unsolved problem in synthetic biology is how to target gene expression to specific cell types. Here, we apply iterative deep learning to design synthetic enhancers with strong differential activity between two human cell lines. We initially train models on published datasets of enhancer activity and chromatin accessibility and use them to guide the design of synthetic enhancers that maximize predicted specificity. We experimentally validate these sequences, use the measurements to re-optimize the model, and design a second generation of enhancers with improved specificity. Our design methods embed relevant transcription factor binding site (TFBS) motifs with higher frequency than comparable endogenous enhancers while using a more selective motif vocabulary, and we show that enhancer activity is correlated with transcription factor expression at the single-cell level. Finally, we characterize causal features of top enhancers via perturbation experiments and show that enhancers as short as 50 bp can maintain specificity. A record of this paper's transparent peer review process is included in the supplemental information.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。