Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis.

阅读:15
作者:Zha Andong, Qi Ming, Deng Yuankun, Li Hao, Wang Nan, Wang Chengming, Liao Simeng, Wan Dan, Xiong Xia, Liao Peng, Wang Jing, Yin Yulong, Tan Bi'e
Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments. Notably, the higher abundance of Bifidobacterium pseudocatenulatum was significantly associated with lower backfat thickness in lean pigs. Microbial-derived lithocholic acid (LCA) species were also significantly enriched in lean pigs and positively correlated with the abundance of B. pseudocatenulatum. In a high-fat diet (HFD)-fed mice model, administration of live B. pseudocatenulatum decreased fat deposition and enhances colonic secondary bile acid biosynthesis. Importantly, pharmacological inhibition of the bile salt hydrolase (BSH), which mediates secondary bile acid biosynthesis, impaired the anti-fat deposition effect of B. pseudocatenulatum in antibiotic-pretreated, HFD-fed mice. Furthermore, dietary LCA also decreased fat deposition in HFD-fed rats and obese pig models. These findings provide mechanistic insights into the anti-fat deposition role of B. pseudocatenulatum and identify BSH as a potential target for preventing excessive fat deposition in humans and animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。