Structural Heterogeneity of Proteoform-Ligand Complexes in Adenosine Monophosphate-Activated Protein Kinase Uncovered by Integrated Top-Down Mass Spectrometry.

阅读:22
作者:Chan Hsin-Ju, Krichel Boris, Bandura Liam J, Chapman Emily A, Rogers Holden T, Fischer Matthew S, Roberts David S, Gao Zhan, Wang Man-Di, Wu Jingshing, Uetrecht Charlotte, Jin Song, Ge Ying
Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric complex (αβγ) that serves as a master regulator of cellular metabolism, making it a prominent drug target for various diseases. Post-translational modifications (PTMs) and ligand binding significantly affect the activity and function of AMPK. However, the dynamic interplay of PTMs, noncovalent interactions, and higher-order structures of the kinase complex remains poorly understood. Herein, we report for the first time the structural heterogeneity of the AMPK complex arising from ligand binding and proteoforms─protein products derived from PTMs, alternative splicing, and genetic variants─using integrated native and denatured top-down mass spectrometry (TDMS). The fully intact AMPK heterotrimeric complex exhibits heterogeneity due to phosphorylation and multiple adenosine monophosphate (AMP) binding states. Native TDMS delineates the subunit composition, AMP binding stoichiometry, and higher-order structure of AMPK complex, while denatured TDMS comprehensively characterizes the proteoforms and localizes the phosphorylation site. Notably, by integrating native TDMS and AlphaFold, we elucidate a flexibly connected regulatory region of AMPK β subunit that was previously unresolvable with traditional structural biology tools. Our findings offer new perspectives on protein kinase regulation and establish a versatile framework for comprehensive characterization of proteoform-ligand complexes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。