Enhancing Antiviral Immunity in the Gastrointestinal Epithelium: The Role of Fibroblast-Endothelium Interaction and Melatonin.

阅读:12
作者:Å eÅ¡kutė Milda, Laucaitytė Goda, InčiÅ«raitė RÅ«ta, Malinauskas Mantas, Jankauskaitė Lina
The gastrointestinal (GI) tract is a major barrier against pathogens, including viruses. The antiviral responses in the GI epithelium have been broadly investigated, but data on the contribution of the stromal cells remain scarce. Melatonin, widely used to treat insomnia, has recently been proposed as an antiviral agent, yet its effect in the GI tract remains poorly understood. We compared the antiviral responses in Caco-2 monocultures and co-cultures with intestinal fibroblasts (HSIFs) and endothelial cells (HUVECs) after stimulation using Poly I:C. We evaluated the apoptosis, proliferation, key antiviral markers (IRF1, IRF3, IFNs, TBK1, STAT3), and mitochondrial and peroxisomal activation with and without melatonin. The Caco-2 cells cultured with the HSIFs and HUVECs demonstrated enhanced proliferation and reduced Poly I:C-induced apoptosis. The co-culture exhibited a more rapid IRF3-IFNλ1 response, higher TBK1 expression, and enhanced peroxisomal activation compared to these properties in the monoculture. Melatonin further reduced apoptosis and modulated organelle-specific antiviral signaling by suppressing peroxisomal activation and promoting mitochondrial activity. Reduced peroxisomal activation was associated with decreased TBK1, IRF3, and IFNλ1 levels and altered STAT3 signaling. These effects were more pronounced when melatonin was applied post-stimulation compared to that under prophylactic use. Fibroblast-endothelial interactions amplify the antiviral responses in the intestinal epithelial cells by activating the TBK1-IRF3-IFNλ1 axis. Melatonin modulates these responses, highlighting its therapeutic potential in viral GI infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。