Caffeine Inhibits Both Basal and Insulin-Activated Urate Transport.

阅读:12
作者:Mandal Asim K, Merriman Tony R, Choi Hyon K, Mount David B
OBJECTIVE: Caffeine, an adenosine receptor antagonist, is a potent central nervous system stimulant that also impairs insulin signaling. Recent studies have suggested that coffee consumption lowers serum urate (SU) and protects against gout by unknown mechanisms. We hypothesized that caffeine lowers SU by affecting activity of urate transporters. METHODS: We examined the effect of caffeine and adenosine on basal and insulin stimulation of net (14)C-urate uptake in the human renal proximal tubule cell line PTC-05 and on individual urate transporters expressed in Xenopus laevis oocytes. RESULTS: We found that caffeine and adenosine efficiently inhibited both basal and insulin stimulation of net (14)C-urate uptake mediated by endogenous urate transporters in PTC-05 cells. In oocytes expressing individual urate transporters, caffeine (>0.2 mM) more efficiently inhibited the basal urate transport activity of GLUT9 isoforms, OAT4, OAT1, OAT3, NPT1, ABCG2, and ABCC4 than did adenosine without significantly affecting URAT1 and OAT10. However, unlike adenosine, caffeine at lower concentrations (<0.2 mM) very effectively inhibited insulin activation of urate transport activity of GLUT9, OAT10, OAT1, OAT3, NPT1, ABCG2, and ABCC4 by blocking activation of Akt and extracellular signal-regulated kinase. CONCLUSION: We postulate that inhibition of urate transport activity of the re-absorptive transporters GLUT9, OAT10, and OAT4 by caffeine is a key mechanism in its urate-lowering effects. Additionally, the ability of caffeine to block insulin-activated urate transport by GLUT9a and OAT10 suggests greater relative inhibition of these transporters in hyperinsulinemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。