Tafazzin-Deficient Zebrafish Display Mitochondrial Dysfunction, Neutropenia, and Metabolic Defects Without Myopathy.

阅读:21
作者:Oyarbide Usua, Anderson Rebecca A, Radzikh Igor, Kodger Jillian V, Patil Akshay S, Staton Morgan, Mulya Anny, Crane Genevieve M, Litovsky Silvio, Sandlers Yana, Corey Seth J
Barth syndrome is an X-linked syndrome characterized by cardiomyopathy, skeletal myopathy, and neutropenia. This life-threatening disorder results from loss-of-function mutations in TAFAZZIN, which encodes a phospholipid-lysophospholipid transacylase located in the mitochondria inner membrane. Decreased cardiolipin levels and increased monolysocardiolipin levels perturb mitochondrial function. However, the mechanism(s) leading to myopathies and neutropenia are unknown, and no currently effective therapy exists. To address these knowledge gaps, we generated tafazzin-deficient zebrafish. Neutropenia developed 5 days post-fertilization, but surprisingly no cardiac or skeletal myopathies were detected into adulthood. tafazzin mutants displayed multiple metabolic disturbances like those observed in humans with Barth syndrome. These include increased monolysocardiolipin: cardiolipin ratios, high levels of 3-methylglutaconic acid, decreased ATP production, increased levels of lactic acid, and hypoglycemia. There were also widespread effects on amino acid and unsaturated fatty acid synthesis. Despite these metabolic disturbances, zebrafish displayed a normal lifespan and fertility. Cardiolipin abnormalities were detected in both larvae and adult tissues, specifically in the heart and whole kidney marrow. Surprisingly, adult tafazzin mutants exhibited a higher number of neutrophils compared to wildtype fish. Further investigation revealed signs of inflammation as evidenced by elevated levels of il6 in the whole kidney marrows and hearts of adult fish. Our comprehensive studies demonstrated that while mitochondrial dysfunction and metabolic defects were evident in tafazzin-deficient zebrafish, these disturbances did not significantly affect their development nor survival. These findings suggest that zebrafish may possess salvage pathways which compensate for Tafazzin loss or that humans have a unique vulnerability to the loss of TAFAZZIN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。