BACKGROUND: Understanding the molecular interactions between cells, tissues or organs is key to understanding the functioning of a biological system as a whole. RESULTS: Here, we propose crossWGCNA: a co-expression-based method that identifies highly interacting genes unbiasedly and that we employ to study stroma-epithelium communication in breast cancer. CrossWGCNA can be applied to bulk, single cell and spatial transcriptomics data. We validate it both in silico and experimentally, and we provide a fully documented R package allowing users to employ it. CONCLUSIONS: The wide applicability and agnostic nature of our tool make it complementary to existing methods overcoming the limitations arising from strong baseline assumptions.
Cross-tissue gene expression interactions from bulk, single cell and spatial transcriptomics with crossWGCNA.
阅读:5
作者:Savino Aurora, Iannuzzi Raffaele M, Avalle Lidia, Lobascio Andrea, Iorio Francesco, Provero Paolo, Poli Valeria
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 26(1):583 |
| doi: | 10.1186/s12864-025-11747-y | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
