BACKGROUND: Understanding the molecular interactions between cells, tissues or organs is key to understanding the functioning of a biological system as a whole. RESULTS: Here, we propose crossWGCNA: a co-expression-based method that identifies highly interacting genes unbiasedly and that we employ to study stroma-epithelium communication in breast cancer. CrossWGCNA can be applied to bulk, single cell and spatial transcriptomics data. We validate it both in silico and experimentally, and we provide a fully documented R package allowing users to employ it. CONCLUSIONS: The wide applicability and agnostic nature of our tool make it complementary to existing methods overcoming the limitations arising from strong baseline assumptions.
Cross-tissue gene expression interactions from bulk, single cell and spatial transcriptomics with crossWGCNA.
阅读:19
作者:Savino Aurora, Iannuzzi Raffaele M, Avalle Lidia, Lobascio Andrea, Iorio Francesco, Provero Paolo, Poli Valeria
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 26(1):583 |
| doi: | 10.1186/s12864-025-11747-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
