Background: Accurate assessment of drug cytotoxicity in vitro is essential for preclinical evaluation of anticancer agents. Methodological parameters such as cell density and solvent concentrations can significantly influence the reproducibility and reliability of cell-based assay results. Objective: This study aims to optimize cell seeding density and evaluate the cytotoxic effects of common solvents (DMSO and ethanol) on different cancer cell lines, complemented by in silico analysis to elucidate underlying mechanisms. Materials and Methods: Six cancer cell lines (HepG2, Huh7, HT29, SW480, MCF-7, and MDA-MB-231) were seeded at different densities to determine the optimal cell seeding number ideal for cell viability assay at 24, 48, and 72 h. The cytotoxicity of DMSO and ethanol was assessed in these cell lines using an MTT assay at multiple time points. In silico docking studies were conducted to investigate the interactions between solvents and key proteins involved in apoptosis, membrane function, and metabolism. Results: A cell density of 2000 cells per well yielded consistent linear viability across cell lines and time points. DMSO at 0.3125% showed minimal cytotoxicity across all cell lines (except MCF-7) and time points; the cytotoxic effect at higher concentrations is variable depending on cell type and exposure duration. Ethanol exhibited rapid and concentration-dependent cytotoxicity, reducing viability by more than 30% at as low as 0.3125% concentration after 24 h. Docking analyses revealed that DMSO binds specifically to apoptotic and membrane proteins, suggesting a role in inducing apoptosis. In contrast, ethanol primarily interacts with metabolic proteins, consistent with its effect on membrane disruption and rapid cell death. Conclusion: DMSO at 0.3125% is a good choice as a solvent since it has low toxicity in most tested cell lines; however, the safe concentration limit is dependent on cell type and exposure duration. Ethanol exhibited higher cytotoxicity, necessitating careful concentration management. The in silico analysis supports these findings, indicating that DMSO interacts with apoptosis-related proteins, whereas ethanol primarily affects metabolic processes. These results highlight the importance of precise cell density optimization and solvents for reliable cytotoxicity assessment in cell-based assays.
Optimizing Cell Density and Unveiling Cytotoxic Profiles of DMSO and Ethanol in Six Cancer Cell Lines: Experimental and In Silico Insights.
阅读:16
作者:Asiri Abutaleb, Tasleem Munazzah, Al Said Muwadah, Asiri Abdulaziz, Al Qarni Ali Ahmed, Bakillah Ahmed
| 期刊: | Methods and Protocols | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 10; 8(4):93 |
| doi: | 10.3390/mps8040093 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
