The metabolic shift of glutaminase 2 to glutaminase 1 promotes LGR5 + progenitor cell proliferation in liver cirrhosis.

阅读:5
作者:Kong Defu, Zhou Qi, He Kang, Heegsma Janette, Blokzijl Hans, de Meijer Vincent E, Faber Klaas Nico
BACKGROUND AND AIM: Liver regeneration is impaired in end-stage liver disease characterized by advanced fibrosis and cirrhosis, where metabolic reprogramming is considered as a therapeutic target. The shift in glutaminolysis from liver-type Glutaminase 2 (GLS2) to kidney-type Glutaminase 1 (GLS1) is crucial in different liver diseases, though its role in liver progenitor cell-mediated regeneration remains unclear. This study aimed to analyze the expression of glutamine-metabolizing enzymes in fibrotic human livers and investigate the role of GLS1 in LGR5(+)-progenitor cell expansion in liver regeneration. METHODS: Healthy and chronically diseased human liver tissue from patients with alcoholic liver disease, viral hepatitis, biliary atresia, primary biliary cholangitis or non-alcoholic steatohepatitis were immunostained for GLS1, GLS2 and glutamine synthetase (GS), and co-stained for LGR5. GLS1 was inhibited in adult progenitor cell-rived human liver organoids to evaluate its role in stemness and cell proliferation pathways. RESULTS: GLS1 expression was enhanced and GLS2 decreased in chronic liver diseases compared to healthy liver. GLS1 was expressed in parenchymal, including hepatocytes, and non-parenchymal cells. In cirrhotic livers, GLS1(+) hepatocytes showed a spatial distribution comparable to the progenitor cell marker LGR5. The GLS1 inhibitor CB839 suppressed progenitor cell markers (LGR5 and AXIN2) via the ROS-Wnt/β-Catenin pathway, which was rescued by glutathione (GSH). The CB839-mediated decrease in cell proliferation in human liver organoids was rescued by non-essential amino acids. CONCLUSIONS: This study identifies GLS1 as a metabolic regulator of progenitor cell expansion aiding liver regeneration in various etiologies of human liver cirrhosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。