Persistent Transcriptome Alterations in Zebrafish Embryos After Discontinued Opioid Exposure.

阅读:7
作者:North Ryan J, Cooper Gwendolyn, Mears Lucas, Bothner Brian, Dlakić Mensur, Merzdorf Christa S
Much attention has been paid to the public health crisis that has resulted from the opioid epidemic. Given the high number of opioid users that are of childbearing age, the impact of utero exposure is a serious concern. Unfortunately, there is little knowledge regarding the consequences of opioid exposure during early development. While neurobehavioral effects of opioid exposure are well-documented, effects of exposure on embryogenesis remain largely unexplored. To address this gap in knowledge, we investigated the effects of oxycodone and fentanyl exposure on gene expression in zebrafish (Danio rerio) embryos using whole embryo RNA sequencing. Embryos were exposed to environmentally relevant (oxycodone HCl 10.6 ng/L and fentanyl citrate 0.629 ng/L) and therapeutically relevant doses (oxycodone HCl 35.14 μg/L and fentanyl citrate 3.14 μg/L) from 2 to 24 h post-fertilization (hpf), followed by another 24 h of opioid-free development. mRNA profiling at 48 hpf revealed dose- and drug-specific gene expression changes. Lower doses of oxycodone and fentanyl both induced more differentially expressed transcripts (DETs) than higher doses, potentially indicative of opioid receptor desensitization occurring at higher concentrations. In total, 892 DETs (corresponding to 866 genes) were identified across all conditions suggesting continued differential gene expression well after cessation of opioid exposure. Gene ontology analysis revealed changes in gene expression relating to extracellular matrix (ECM) organization, cell adhesion, and visual and nervous system formation. Key pathways include those involved in axon guidance, synapse formation, and ECM biosynthesis/remodeling, all of which have potential implications on neural connectivity and sensory development. These findings demonstrate that very early developmental exposure to opioids induces persistent transcriptomic changes which may have lasting implications for vertebrate cellular functions. Overall, these data provide insights into the molecular mechanisms of opioid-induced alterations during development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。