Changes in mitochondrial thymidine metabolism and mtDNA copy number during induced pluripotency.

阅读:17
作者:Kim Hyun Kyu, Song Yena, Kye Minji, Yu Byeongho, Choi Hyung Kyu, Moon Sung-Hwan, Lee Man Ryul
Somatic cell reprogramming into human induced pluripotent stem cells entails significant intracellular changes, including modifications in mitochondrial metabolism and a decrease in mitochondrial DNA copy number. However, the mechanisms underlying this decrease in mitochondrial DNA copy number during reprogramming remain unclear. Here we aimed to elucidate these underlying mechanisms. Through a meta-analysis of several RNA sequencing datasets, we identified genes responsible for the decrease in mitochondrial DNA. We investigated the functions of these identified genes and assessed their regulatory mechanisms. In particular, the expression of the thymidine kinase 2 gene (TK2), located in the mitochondria and required for mitochondrial DNA synthesis, is decreased in human pluripotent stem cells as compared with its expression in somatic cells. TK2 was significantly downregulated during reprogramming and markedly upregulated during differentiation. Collectively, this decrease in TK2 levels induces a decrease in mitochondrial DNA copy number and contributes to shaping the metabolic characteristics of human pluripotent stem cells. However, contrary to our expectations, treatment with a TK2 inhibitor impaired somatic cell reprogramming. These results suggest that decreased TK2 expression may result from metabolic conversion during somatic cell reprogramming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。