In recent decades, epidemics and pandemics have multiplied throughout the world, with viruses generally being the primary responsible agents. Among these, influenza viruses play a key role, as they potentially cause severe respiratory distress, representing a major threat to public health. Our study aims to develop new broad-spectrum antivirals against influenza to improve the response to viral disease outbreaks. We engineered macromolecules (named CD-SA) consisting of a β-cyclodextrin scaffold modified with hydrophobic linkers in the primary face, onto which unitary sialic acid epitopes are covalently grafted to mimic influenza virus-host receptors. We assessed the antiviral efficacy, mechanism of action, and the genetic barrier to resistance of this compound against influenza in vitro, ex vivo, and in vivo. We demonstrated that CD-SA, with a unitary SA, without extensive polysaccharides or specific connectivity, acts as a potent virucidal antiviral against several human influenza A and B viruses. Additionally, CD-SA displayed antiviral activity against SARS-CoV-2, a virus that also relies on sialic acid for attachment. We then assessed the genetic barrier to resistance for CD-SA. While resistance emerged after six passages with CD-SA alone, the virus remained sensitive through eight passages when co-treated with interferon-λ1 (IFN λ1). Finally, we completed the characterization of the antiviral activity by conducting both ex vivo and in vivo studies, demonstrating a potent antiviral effect in human airway epithelia and in a mouse model of infection, higher than that of Oseltamivir, a currently approved anti-influenza antiviral. The findings presented in this study support the potential therapeutic utility of a novel β-cyclodextrin-based nanomaterial for the treatment of influenza infections and potentially other sialic acid-dependent viruses.
Development of Broad-Spectrum β-Cyclodextrins-Based Nanomaterials Against Influenza Viruses.
阅读:15
作者:Zwygart Arnaud Charles-Antoine, Medaglia Chiara, Zhu Yong, Bart Tarbet E, Jonna Westover, Fage Clément, Le Roy Didier, Roger Thierry, Clément Sophie, Constant Samuel, Huang Song, Stellacci Francesco, Silva Paulo Jacob, Tapparel Caroline
| 期刊: | Journal of Medical Virology | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Dec;96(12):e70101 |
| doi: | 10.1002/jmv.70101 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
