Selict-seq profiles genome-wide off-target effects in adenosine base editing.

阅读:2
作者:Yuan Kexin, Xi Xin, Han Shaoqing, Han Jingyu, Zhao Bin, Wei Qi, Zhou Xiang
Adenosine base editors (ABEs) facilitate A·T to G·C base pair conversion with significant therapeutic potential for correcting pathogenic point mutations in human genetic diseases, such as sickle cell anemia and β-thalassemia. Unlike CRISPR-Cas9 systems that induce double-strand breaks, ABEs operate through precise deamination, avoiding chromosomal instability. However, the off-target editing effects of ABEs remain inadequately characterized. In this study, we present a biochemical method Selict-seq, designed to evaluate genome-wide off-target editing by ABEs. Selict-seq specifically captures deoxyinosine-containing single-stranded DNA and precisely identifies deoxyadenosine-to-deoxyinosine (dA-to-dI) mutation sites, elucidating the off-target effects induced by ABEs. Through investigations involving three single-guide RNAs, we identified numerous unexpected off-target edits both within and outside the protospacer regions. Notably, ABE8e(V106W) exhibited distinct off-target characteristics, including high editing rates (>10%) at previously unreported sites (e.g. RNF2 and EMX1) and out-of-protospacer mutations. These findings significantly advance our understanding of the off-target landscape associated with ABEs. In summary, our approach enables an unbiased analysis of the ABE editome and provides a widely applicable tool for specificity evaluation of various emerging genome editing technologies that produce intermediate products as deoxyinosine.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。