The deamination reaction is important to both fundamental organic chemistry and biochemistry. Traditional chemical methods of deamination rely on the use of aryldiazonium salts under harsh acidic conditions, which limits the application scope for most biological substrates. Here we present an N-nitrosation strategy for deamination under mild conditions that DNA and RNA biological macromolecules can tolerate. Cooperative catalysis combining a carbonyl organocatalyst with a Lewis acid catalyst facilitates the formation of a carbon-nitro intermediate from a primary amine, which, on rearrangement into N-nitrosamine, leads to the selective deamination of unsubstituted canonical DNA/RNA bases under mild conditions. We used this approach to deaminate adenine into hypoxanthine, read as guanine by reverse transcriptases or DNA polymerases, while N(6)-methyladenosine sites resist deamination and remain identified as adenine. This reactivity enables a chemically mild, low-input detection method for sequencing of adenosine methylation at base resolution, named chemical cooperative catalysis-assisted N(6)-methyladenosine sequencing.
Small-molecule-catalysed deamination enables transcriptome-wide profiling of N(6)-methyladenosine in RNA.
阅读:7
作者:Wang Pingluan, Ye Chang, Zhao Michelle, Jiang Bochen, He Chuan
| 期刊: | Nature Chemistry | 影响因子: | 20.200 |
| 时间: | 2025 | 起止号: | 2025 Jul;17(7):1042-1052 |
| doi: | 10.1038/s41557-025-01801-3 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
