Sulfolobus acidocaldarius, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the saci_2122 promoter (P(ara)), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria. To establish S. acidocaldarius as a production strain in biotechnology in the long term, it is intrinsically relevant to optimize its tools and capacities to increase production efficiencies. Here we show that protein production is increased by the integration of S. acidocaldarius 5'-UTRs into P(ara) expression plasmids. Using the esterase Saci_1116 as a reporter protein, we observed a four-fold increase in soluble and active protein yield upon insertion of the saci_1322 (alba) 5'-UTR. Screening of four additional 5'-UTRs from other highly abundant proteins (thα, slaA, slaB, saci_0330) revealed a consistent enhancement in target protein production. Additionally, site-directed mutagenesis of the Shine-Dalgarno (SD) motif within the alba 5'-UTR revealed its significance for protein synthesis. Ultimately, the alba 5'-UTR optimized expression vector improved the expression of various proteins, including six glycosyltransferases and one hydroxyacyl-CoA dehydratase from S. acidocaldarius, and a malto-oligosyltrehalose trehalohydrolase from Saccharolobus solfataricus, demonstrating its applicability. Our results show that the integration of SD-motif containing 5'-UTRs significantly enhanced plasmid-based protein production in S. acidocaldarius. This advancement in recombinant expression not only broadens the utility of S. acidocaldarius as an archaeal expression platform but also marks an important step toward potential biotechnological applications.
5'-untranslated region sequences enhance plasmid-based protein production in Sulfolobus acidocaldarius.
阅读:3
作者:Kuschmierz Laura, Wagner Alexander, Schmerling Christian, Busche Tobias, Kalinowski Jörn, Bräsen Christopher, Siebers Bettina
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2024 | 起止号: | 2024 Nov 25; 15:1443342 |
| doi: | 10.3389/fmicb.2024.1443342 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
