Structural and functional characterization of the cardiac mitochondria-associated reticular membranes in the ob/ob mouse model.

阅读:4
作者:Guedouari Hala, Dia Maya, Geoffray Juliette, Brun Camille, Moulin Florentin, Givre Lucas, Belmudes Lucid, Leon Christelle, Chanon Stephanie, Ji-Cao Jingwei, Chouabe Christophe, Ducreux Sylvie, Crola Da Silva Claire, Gomez Ludovic, Couté Yohann, Thibault Helene, Rieusset Jennifer, Paillard Melanie
Type 2 diabetes (T2D) and obesity strongly lead to diabetic cardiomyopathy (DCM). The involvement of mitochondria-associated reticular membranes (MAMs), a signaling hub in the cardiomyocyte, starts to be demonstrated in T2D-related metabolic disorders. We recently discovered a cardiac MAM Ca(2+) uncoupling in a high-fat high-sucrose diet (HFHSD)-induced mouse model of DCM. To better determine the role of MAMs in the progression of DCM, we here aimed to characterize the proteomic composition and function of the cardiac MAMs of another obesogenic T2D mouse model, the leptin-deficient ob/ob mouse. 12-week old male C57Bl6-N ob/ob mice displayed strain rate dysfunction and concentric remodeling, while no change was observed in fractional shortening or diastolic function. Increased lipid deposition but no fibrosis was measured in the ob/ob heart compared to WT. Electron microscopy analysis revealed that cardiac MAM length and width were similar between both groups. A trend towards an increased MAM protein content was measured in the ob/ob heart. MAM proteome analyses showed mainly increased processes in ob/ob hearts: cellular response to stress, lipid metabolism, ion transport and membrane organization. Functionally, MAM-driven Ca(2+) fluxes were unchanged but hypoxic stress induced a cell death increase in the ob/ob cardiomyocyte. Mitochondrial respiration, cardiomyocyte shortening, ATP and ROS content were similar between groups. To conclude, at that age, while being strongly hyperglycemic and insulin-resistant, the ob/ob mouse model rather displays a modest DCM without strong changes in MAMs: preserved structural and functional MAM Ca(2+) coupling but increased response to stress.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。