Accurate prediction of TCR specificity forms a holy grail in immunology and large language models and computational structure predictions provide a path to achieve this. Importantly, current TCR-pMHC prediction models have been trained and evaluated using historical data of unknown quality. Here, we develop and utilize a high-throughput synthetic platform for TCR assembly and evaluation to assess a large fraction of VDJdb-deposited TCR-pMHC entries using a standardized readout of TCR function. Strikingly, this analysis demonstrates that claimed TCR reactivity is only confirmed for 50% of evaluated entries. Intriguingly, the use of TCRbridge to analyze AlphaFold3 confidence metrics reveals a substantial performance in distinguishing functionally validating and non-validating TCRs even though AlphaFold3 was not trained on this task, demonstrating the utility of the validated VDJdb (TCRvdb) database that we generated. We provide TCRvdb as a resource to the community to support training and evaluation of improved predictive TCR specificity models.
A functionally validated TCR-pMHC database for TCR specificity model development.
阅读:3
作者:Messemaker Marius, Kwee Bjørn P Y, Moravec Živa, Ãlvarez-Salmoral Daniel, Urbanus Jos, de Paauw Sam, Geerligs Jeroen, Voogd Rhianne, Morris Ben, Guislain Aurélie, MuÃmann Maike, Winkler Yaël, Steinmetz Maxime, Iras Matyas, Marcus Eric, Teuwen Jonas, Perrakis Anastassis, Beijersbergen Roderick L, Scheper Wouter, Schumacher Ton N
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 12 |
| doi: | 10.1101/2025.04.28.651095 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
