A predicted epithelial-to-mesenchymal transition-associated mRNA/miRNA axis contributes to the progression of diabetic liver disease.

阅读:4
作者:Ghionescu Alina-Veronica, Sorop Andrei, Linioudaki Ekaterini, Coman Cristin, Savu Lorand, Fogarasi Marton, Lixandru Daniela, Dima Simona Olimpia
Despite public health measures, type 2 diabetes (T2D) is still a significant concern worldwide, given its associated complications, including hepatic alterations. The role of epithelial-to-mesenchymal transition (EMT) in liver fibrosis is well established. However, its effects on the progression of diabetic liver diseases are not well understood. Therefore, this study aims to investigate the mRNA/miRNA axes involved in this process. Bioinformatic analysis revealed new EMT-associated genes (CDH2, ITGB1, COL4A1, COL1A1, TNC, CCN2, and JUN), which showed higher expression in obese T2D and hepatocellular carcinoma (HCC) patients. In addition, six miRNAs (miR-21-5p, miR-26a-5p, miR-34a-5p, miR-106a-5p, miR-320a-3p and miR-424-5p) have been found as potential targets. Among them, miR-26a-5p and miR-424-5p were significantly downregulated in nonalcoholic steatohepatitis (NASH) and HCC (p < 0.05), being considered potential negative regulators of the EMT process. In our hepatic mesenchymal culture model, miR-26a-5p negatively regulated cadherin 2 (also known as N-cadherin, CDH2) and promoted the cadherin 1 (also known as E-cadherin, CDH1) expression. Our results reveal potential molecules involved in liver tumor development. Moreover, we observe that miR-26a-5p impairs EMT in the initial stages of diabetic liver disease by inhibiting CDH2 and could be a valuable target in this pathology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。