The metabolism of drugs and foreign substances in humans typically involves multiple enzymatic steps, particularly in phase-1 biotransformation in the liver, where various cytochrome P450 monooxygenases (CYPs) play crucial roles. This complexity can lead to a wide range of metabolites. Understanding the contributions of individual CYPs and their interactions within these intricate enzyme cascades can be challenging. We recently developed an in vitro biotransformation platform employing various Chinese Hamster Ovarian (CHO) cell clones. These clones express human cytochrome P450 oxidoreductase (CPR), and each is defined by a specific human CYP enzyme expression, thus exhibiting no detectable endogenous CYP enzyme activity (mono-CYP CHO platform). In this study, we investigated whether the mono-CYP CHO platform is a suitable tool for modeling complex drug metabolization reactions in vitro. Tamoxifen (TAM) was selected as a model substance due to its role as a prodrug widely used in breast cancer therapy, where its main active metabolite, endoxifen, arises from a two-step metabolism primarily involving the CYP system. Specifically, the combined activity of CYP3A4 and CYP2D6 is believed to be essential for efficient endoxifen production. However, the physiological metabolization pathway of TAM is more complex and interconnected, and the reasons for TAM's therapeutic success and variability among patients are not yet fully understood. Analogous to our recently introduced mono-CYP3A4 CHO cells, we generated a CHO cell line expressing human CPR and CYP2D6, including analysis of CYP2D6 expression and specific activity. Comparative studies on the metabolization of TAM were performed with both mono-CYP CHO models individually and in co-culture with intact cells as well as with isolated microsomes. Supernatants were analyzed by HPLC to calculate individual CYP activity for each metabolite. All the picked mono-CYP2D6 clones expressed similar CYP2D6 protein amounts but showed different enzyme activities. Mono-CYP2D6 clone 18 was selected as the most suitable for TAM metabolization based on microsomal activity assays. TAM conversion with mono-CYP2D6 and -3A4 clones, as well as the combination of both, resulted in the formation of the expected main metabolites. Mono-CYP2D6 cells and microsomes produced the highest detected amounts of 4-hydroxytamoxifen and endoxifen, along with N-desmethyltamoxifen and small amounts of N,N-didesmethyltamoxifen. N-desmethyltamoxifen was the only TAM metabolite detected in notable quantities in mono-CYP3A4, while 4-hydroxytamoxifen and endoxifen were present only in trace amounts. In CYP2D6/3A4 co-culture and equal mixtures of both CYP microsomes, all metabolites were detected at concentrations around 50% of those in individual clones, indicating no significant synergistic effects. In conclusion, our mono-CYP CHO model confirmed the essential role of CYP2D6 in synthesizing the active TAM metabolite endoxifen and indicated that CYP2D6 is also involved in producing the by-metabolite N,N-didesmethyltamoxifen. The differences in metabolite spectra between the two mono-CYP models highlight the CYP specificity and sensitivity of our in vitro system.
Mono-CYP CHO Model: A Recombinant Chinese Hamster Ovary Cell Platform for Investigating CYP-Specific Tamoxifen Metabolism.
阅读:8
作者:Schulz Christian, Stegen Sarah, Jung Friedrich, Küpper Jan-Heiner
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 23; 26(9):3992 |
| doi: | 10.3390/ijms26093992 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
