Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient.

阅读:9
作者:van der Loos Luna M, Steinhagen Sophie, Stock Willem, Weinberger Florian, D'hondt Sofie, Willems Anne, De Clerck Olivier
The green seaweed Ulva relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. Ulva-associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear. We analyzed 91 Ulva samples across a 2000-kilometer Atlantic-Baltic Sea salinity gradient using metagenomic sequencing. Metabolic reconstruction of 639 metagenome-assembled genomes revealed widespread potential for carbon, nitrogen, sulfur, and vitamin metabolism. Although the R(2) value for salinity explained 70% of taxonomic variation, it accounted only for 17% of functional variation. The limited variation was attributed to typical high-salinity bacteria exhibiting enrichment in genes for thiamine, pyridoxal, and betaine biosynthesis, which likely contribute to stress mitigation and osmotic homeostasis in response to salinity variations. Our results emphasize the importance of functional profiling to understand the seaweed holobiont and its collective response to environmental change.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。