The green seaweed Ulva relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. Ulva-associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear. We analyzed 91 Ulva samples across a 2000-kilometer Atlantic-Baltic Sea salinity gradient using metagenomic sequencing. Metabolic reconstruction of 639 metagenome-assembled genomes revealed widespread potential for carbon, nitrogen, sulfur, and vitamin metabolism. Although the R(2) value for salinity explained 70% of taxonomic variation, it accounted only for 17% of functional variation. The limited variation was attributed to typical high-salinity bacteria exhibiting enrichment in genes for thiamine, pyridoxal, and betaine biosynthesis, which likely contribute to stress mitigation and osmotic homeostasis in response to salinity variations. Our results emphasize the importance of functional profiling to understand the seaweed holobiont and its collective response to environmental change.
Low functional change despite high taxonomic turnover characterizes the Ulva microbiome across a 2000-km salinity gradient.
阅读:20
作者:van der Loos Luna M, Steinhagen Sophie, Stock Willem, Weinberger Florian, D'hondt Sofie, Willems Anne, De Clerck Olivier
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 17; 11(3):eadr6070 |
| doi: | 10.1126/sciadv.adr6070 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
