BACKGROUND: Kiwiberry is an emerging edible fruit with market potential owing to its advantages of small size, thin and hairless skin, and sweet taste. However, kiwiberry is highly susceptible to softening after harvest, which poses a challenge for storage and transport. To reveal the underlying cause of kiwiberry softening, it is essential to investigate the characteristics of postharvest fruit and the molecular mechanisms that affect changes in fruit firmness. RESULTS: Morphological observations and analysis of physical parameters showed that the skin of kiwiberry did not change markedly from the 1st to the 7th day after harvest, while the colour of the inner pericarp gradually turned yellow. By the 9th day of room temperature storage, the kiwiberries began to rot. The hardness decreased rapidly from the 1st to the 5th day postharvest, reaching the low level on the 5th day. The starch and pectin contents of kiwiberry showed a downward trend with increasing storage time. Transcriptome sequencing and weighted gene co-expression network analysis identified 29 key genes associated with the changes in the hardness of kiwiberry after harvest. Gene Ontology enrichment analysis indicated that these 29 genes are mainly involved in pectin metabolism, starch synthesis, starch decomposition, and starch metabolism. In addition, three transcription factors, AGL31, HAT14, and ALC, were identified to be strongly positively correlated with the 29 genes that affect the hardness changes of kiwiberry after harvest, and 28 of the 29 key genes were predicted to be regulated by HAT14. CONCLUSIONS: These results reveal the changes in morphological characteristics and physiological indicators during the postharvest ripening and softening of kiwiberry stored under room temperature conditions. Transcriptome analysis identified 29 key genes and three transcription factors that affect the firmness changes of postharvest kiwiberry. The results of this study thus provide insight into the transcriptional regulatory mechanism of kiwiberry softening during storage to improve the postharvest quality.
Transcriptome analysis reveals regulatory mechanism of postharvest softening in kiwiberry.
阅读:7
作者:Liu Zhao, Sun Yang, Liu Zhenpan, Song Jianyu, Yang Weicong, Wang Zhannan, Liang Taiming, Liang Dejun
| 期刊: | BMC Plant Biology | 影响因子: | 4.800 |
| 时间: | 2024 | 起止号: | 2024 Oct 23; 24(1):994 |
| doi: | 10.1186/s12870-024-05715-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
