Transcriptome analysis reveals regulatory mechanism of postharvest softening in kiwiberry.

阅读:2
作者:Liu Zhao, Sun Yang, Liu Zhenpan, Song Jianyu, Yang Weicong, Wang Zhannan, Liang Taiming, Liang Dejun
BACKGROUND: Kiwiberry is an emerging edible fruit with market potential owing to its advantages of small size, thin and hairless skin, and sweet taste. However, kiwiberry is highly susceptible to softening after harvest, which poses a challenge for storage and transport. To reveal the underlying cause of kiwiberry softening, it is essential to investigate the characteristics of postharvest fruit and the molecular mechanisms that affect changes in fruit firmness. RESULTS: Morphological observations and analysis of physical parameters showed that the skin of kiwiberry did not change markedly from the 1st to the 7th day after harvest, while the colour of the inner pericarp gradually turned yellow. By the 9th day of room temperature storage, the kiwiberries began to rot. The hardness decreased rapidly from the 1st to the 5th day postharvest, reaching the low level on the 5th day. The starch and pectin contents of kiwiberry showed a downward trend with increasing storage time. Transcriptome sequencing and weighted gene co-expression network analysis identified 29 key genes associated with the changes in the hardness of kiwiberry after harvest. Gene Ontology enrichment analysis indicated that these 29 genes are mainly involved in pectin metabolism, starch synthesis, starch decomposition, and starch metabolism. In addition, three transcription factors, AGL31, HAT14, and ALC, were identified to be strongly positively correlated with the 29 genes that affect the hardness changes of kiwiberry after harvest, and 28 of the 29 key genes were predicted to be regulated by HAT14. CONCLUSIONS: These results reveal the changes in morphological characteristics and physiological indicators during the postharvest ripening and softening of kiwiberry stored under room temperature conditions. Transcriptome analysis identified 29 key genes and three transcription factors that affect the firmness changes of postharvest kiwiberry. The results of this study thus provide insight into the transcriptional regulatory mechanism of kiwiberry softening during storage to improve the postharvest quality.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。