Integrated transcriptomics and metabolomics provide insights into the biosynthesis of militarine in the cell suspension culture system of Bletilla striata.

阅读:6
作者:Li Qingqing, Xu Mengwei, Wu Fengju, Guo Ziyi, Yang Ning, Li Lin, Wen Weie, Xu Delin
Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata. Subsequently, samples were taken from callus at different culturing stages to investigate the synthesis mechanisms of militarine in B. striata through integrated metabolomics and transcriptomics. Metabolomics analysis revealed that acetate ions promoted militarine synthesis, while SA had an inhibitory effect. Additionally, regulators such as ferulic acid, 2-hydroxy-3-phenylpropionic acid, and cis-beta-D-Glucosyl-2-hydroxycinnamate were identified as influencing militarine synthesis. Transcriptomics analysis indicated that the expression levels of genes involved in phenylalanine metabolism, phenylpropanoid biosynthesis, and tyrosine metabolism were correlated with militarine content. This study sheds light on the regulatory mechanism of militarine biosynthesis in plants. The results suggested that acetate ions and SA impact militarine synthesis through specific metabolic pathways and gene expression changes. This knowledge serves as a foundation for future research on militarine biosynthesis and its industrial production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。