Protein Carrier Adeno-Associated Virus.

阅读:5
作者:Hoffmann Mareike Daniela, Sorensen Ryan James, Extross Ajay, He Yungui, Schmidt Daniel
Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy, enabling the delivery of therapeutic DNA to target cells. However, the potential of AAV to deliver protein payloads has been unexplored. In this study, we engineered a protein carrier AAV (pcAAV) to package and deliver proteins by inserting binding domains on the interior capsid surface. These binding domains mediate the packaging of specific target proteins through interaction with cognate peptides or protein tags during the capsid assembly process. We demonstrate the packaging of multiple proteins, including green fluorescent protein, Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. Packaging efficiency is modulated by the binding domain insertion site, the viral protein isoform containing the binding domain, and the subcellular localization of the target protein. We show that pcAAV can enter cells and deliver the protein payload and that enzymes retain their activity after packaging. Importantly, this protein packaging capability can be translated to multiple AAV serotypes. Our work establishes AAV as a protein delivery vehicle, significantly expanding the utility of this viral vector for biomedical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。