Hinge Truncation to Improve Aggregation Kinetics and Thermal Stability of an Antibody Fab Fragment.

阅读:6
作者:Zhang Cheng, Karu Kersti, Dalby Paul A
The hinge region of antibody fragments plays a crucial role in their stability and aggregation properties. In this study, we investigated the effects of hinge truncations on the thermal stability and aggregation propensity of the A33 Fab antibody fragment. Eight Fab variants were engineered by introducing stop codons to truncate 1-8 residues at the hinge region (heavy chain residues 221-228). These variants were then expressed, purified, and characterized in terms of stability and aggregation propensity using SDS-PAGE, SEC-HPLC, LC-MS, and thermal stability assays. Our findings demonstrate that truncating the hinge region can enhance the thermal stability and reduce the aggregation of Fab fragments, and that progressive truncations identified an optimal hinge length for stability. Notably, the 227TGA variant exhibited a significant 14.5% reduction in aggregation rate compared to the wild type, without compromising thermal stability. By contrast, 221TGA removed all of the hinge and reduced the aggregation rate by 13%, but also decreased the thermal stability. These results suggest that hinge truncation is a promising strategy for improving the developability of therapeutic antibody Fab fragments by mitigating some of the stability issues associated with aggregation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。