Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells.

阅读:1
作者:Jorge Inmaculada, Navarro Pedro, Martínez-Acedo Pablo, Núñez Estefanía, Serrano Horacio, Alfranca Arántzazu, Redondo Juan Miguel, Vázquez Jesús
Statistical models for the analysis of protein expression changes by stable isotope labeling are still poorly developed, particularly for data obtained by 16O/18O labeling. Besides large scale test experiments to validate the null hypothesis are lacking. Although the study of mechanisms underlying biological actions promoted by vascular endothelial growth factor (VEGF) on endothelial cells is of considerable interest, quantitative proteomics studies on this subject are scarce and have been performed after exposing cells to the factor for long periods of time. In this work we present the largest quantitative proteomics study to date on the short term effects of VEGF on human umbilical vein endothelial cells by 18O/16O labeling. Current statistical models based on normality and variance homogeneity were found unsuitable to describe the null hypothesis in a large scale test experiment performed on these cells, producing false expression changes. A random effects model was developed including four different sources of variance at the spectrum-fitting, scan, peptide, and protein levels. With the new model the number of outliers at scan and peptide levels was negligible in three large scale experiments, and only one false protein expression change was observed in the test experiment among more than 1000 proteins. The new model allowed the detection of significant protein expression changes upon VEGF stimulation for 4 and 8 h. The consistency of the changes observed at 4 h was confirmed by a replica at a smaller scale and further validated by Western blot analysis of some proteins. Most of the observed changes have not been described previously and are consistent with a pattern of protein expression that dynamically changes over time following the evolution of the angiogenic response. With this statistical model the 18O labeling approach emerges as a very promising and robust alternative to perform quantitative proteomics studies at a depth of several thousand proteins.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。