Saccharomyces cerevisiae Xrs2 Binds DNA Through Its FHA Domain.

阅读:3
作者:Vigneswaran Ajeak, Canny Marella D, Azatian Stephan B, Latham Michael P
The MRE11-RAD50-NBS1/Xrs2 (MRN/X) complex is a conserved first responder to DNA double-strand breaks (DSBs). All three members of the complex have DNA binding properties that support the range of functions MRN/X performs in its role in DNA DSB repair. Previous structural and functional studies have localized DNA binding sites within MRE11 and RAD50, but no structural model exists for DNA association with NBS1/Xrs2. Here, we identify a DNA binding site within the N-terminal folded FHA-BRCT-BRCT domain of Saccharomyces cerevisiae Xrs2. Using NMR chemical shift perturbations and paramagnetic relaxation enhancements, we define a DNA binding interface on the FHA domain and generate integrative models of the DNA-bound complex via the program HADDOCK. DNA binding overlaps with the site involved in phosphorylated Sae2 peptide binding - an interaction analogous to that between Schizosaccharomyces pombe Nbs1 and phosphorylated Ctp1. Comparative binding assays and site-directed mutagenesis confirm a shared binding surface for DNA and pSae2 on the FHA domain of Xrs2 and highlight the need for functional assays and mutagenesis for validating HADDOCK models. Finally, NMR relaxation experiments reveal altered ps-ns timescale dynamics but unaltered µs-ms conformational exchange upon ligand binding. These findings define a direct DNA binding role for Xrs2 and provide a structural framework for understanding its dual recognition of DNA and phosphoprotein partners during DSB repair.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。