Decoding Insulin Secretory Granule Maturation Using Genetically Encoded pH Sensors.

阅读:3
作者:Lin Wen, Tseng Kaylee, Fraser Scott E, Junge Jason, White Kate L
Insulin is a peptide hormone secreted from pancreatic beta cells to regulate blood glucose homeostasis. Maturation of active insulin occurs within insulin secretory granules (ISG) by acidification of the lumen and enzymatic cleavage of insulin before secretion. This process is dysregulated in diabetes, and many questions remain on how the cell controls insulin maturation. We address this gap in knowledge by designing two genetically encoded fluorescence pH sensors and a fluorescence lifetime imaging and analysis pipeline to monitor the pH of individual secretory ISGs within live cells at higher resolution and precision than previously possible. We observed different subpopulations of ISGs based on their pH and subcellular localization. Signals regulating metabolism vs membrane depolarization mobilize different subpopulations of ISGs for secretion, and we confirm that maturation signals acidify ISGs. We conclude that different signaling networks uniquely impact ISG mobilization and secretion. Future applications of these tools will be useful for exploring how these processes are dysregulated in diabetes and provide new paths for developing more effective treatments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。