A continuum model of mechanosensation based on contractility kit assembly.

阅读:22
作者:Dolgitzer David, Plaza-Rodríguez Alma I, Iglesias Miguel A, Jacob Mark Allan C, Todd Bethany A, Robinson Douglas N, Iglesias Pablo A
The ability of cells to sense and respond to mechanical forces is crucial for navigating their environment and interacting with neighboring cells. Myosin II and cortexillin I form complexes known as contractility kits (CKs) in the cytosol, which facilitate a cytoskeletal response by accumulating locally at the site of inflicted stress. Here, we present a computational model for mechanoresponsiveness in Dictyostelium, analyzing the role of CKs within the mechanoresponsive mechanism grounded in experimentally measured parameters. Our model further elaborates on the established distributions and channeling of contractile proteins before and after mechanical force application. We rigorously validate our computational findings by comparing the responses of wild-type cells, null mutants, overexpression mutants, and cells deficient in CK formation to mechanical stresses. Parallel in vivo experiments measuring myosin II cortical distributions at equilibrium provide additional validation. Our results highlight the essential functions of CKs in cellular mechanosensitivity and suggest new insights into the regulatory dynamics of mechanoresponsiveness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。