KNDy Neurons and the Control of the Gonadotropic Axis in the Midgestation Fetal Sheep.

阅读:8
作者:Amodei Rebecka, Jonker Sonnet S, Lazen Evelyn, Nestor Casey C, Estill Charles T, Roselli Charles E
KNDy neurons, located in the hypothalamic arcuate nucleus, coexpress kisspeptin (Kiss), neurokinin B, and dynorphin and play a crucial role in regulating GnRH/LH secretion in midgestation sheep fetuses. We hypothesize that KNDy-GnRH signaling is established during midgestation, with negative feedback acting through KNDy neurons regulating testosterone levels needed for brain masculinization in male fetuses. We used immunofluorescence histochemistry to assess the effect of chemical castration with the GnRH antagonist degarelix on arcuate KNDy neurons in fetal sheep. Fluorescent in situ hybridization demonstrated the presence of steroid receptors in untreated midgestation fetal kisspeptin neurons. Additionally, unanesthetized cannulated midgestation fetal sheep were used to examine the effects of KNDy peptides on LH secretion and characterize receptor specificity. Treatment of male lamb fetuses with degarelix on day 62 of gestation resulted in significantly decreased plasma LH and testosterone concentrations (P < .05), accompanied by a significant increase in arcuate Kiss neurons (P < .05). In unanesthetized cannulated fetuses, bolus administration of KP-10 (a Kiss receptor agonist) and senktide (NK3 receptor agonist) elicited robust LH release within 15†minutes. Pretreatment with the NK3 receptor antagonist SB222200 blocked the LH response to senktide, whereas P271 (Kiss receptor antagonist) did not affect basal LH or block the LH response to KP-10. Blocking κ-opiate receptor with PF4455242 significantly increased LH release. These results support the hypothesis that KNDy neurons regulate GnRH and gonadotropin secretion in midgestation sheep fetuses, acting as targets for negative feedback to maintain a stable androgen environment crucial for brain masculinization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。