Blood-Brain Barrier-Penetrating Nanocarriers Enable Microglial-Specific Drug Delivery in Hypothalamic Neuroinflammation.

阅读:8
作者:Goo Yoon Tae, Grigoriev Vladislav, Korzun Tetiana, Sharma Kongbrailatpam Shitaljit, Singh Prem, Taratula Olena R, Marks Daniel L, Taratula Oleh
Hypothalamic inflammation plays a pivotal role in appetite dysregulation across various pathological conditions, including cancer cachexia. However, delivering anti-inflammatory agents to microglia, key mediators of hypothalamic inflammation, remains challenging due to the unsurmountable blood-brain barrier (BBB). To overcome this challenge, dual peptide-functionalized polymeric nanocarriers capable of both BBB penetration and microglial targeting are engineered for systemic delivery of IRAK4 inhibitors to treat hypothalamic inflammation. After intravenous administration, the nanocarriers demonstrated efficient brain and hypothalamic accumulation in both acute (lipopolysaccharide-induced) and chronic (pancreatic cancer cachexia) neuroinflammation mouse models. Their microglial targeting capability is confirmed through hypothalamic immunohistochemistry and flow cytometry analysis using a BBB-microglia co-culture model. Systemic administration of IRAK4 inhibitor-loaded nanocarriers effectively attenuated hypothalamic inflammation in both animal models, as evidenced by marked reductions in pro-inflammatory cytokine expression. Treated animals displayed significantly increased food intake and improved body weight compared to the saline-treated group. In the cancer cachexia model, the treatment preserved muscle mass, reducing cachexia-induced gastrocnemius muscle loss by 50% relative to controls. These findings highlight the potential of this nanocarrier system as a promising therapeutic strategy for conditions characterized by hypothalamic dysfunction, particularly cancer cachexia, where neuroinflammation plays a crucial role in disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。