Chronic exposure to arsenic, a toxic metalloid frequently found in groundwater and food, represents a significant environmental health risk and has been implicated in the etiology of several cancers, including ovarian cancer. However, the precise pathways through which arsenic exerts its toxic impact on the ovary are not fully understood. This study investigates the impact of chronic arsenic exposure at environmentally relevant concentrations (75 ppb or μg/L) on primary human ovarian surface (OCE1) and fallopian tube (FNE1) cultures derived from the same donor. These heterogeneous cultures provide a unique, human-relevant platform to investigate how chronic arsenic exposure influences distinct cell types within a shared microenvironment. Prolonged arsenic exposure induced significant cytotoxicity and promoted the formation of giant and/or multinucleated cells in both cultures. These cells exhibited phagocytosis-like properties, actively engulfing apoptotic debris. Transcriptomic analyses and pathway enrichment revealed robust activation of pro-inflammatory signaling, notably the canonical NF-κB pathway. This was marked by nuclear translocation of the NF-κB p65 subunit and elevated expression and secretion of pro-inflammatory cytokines, including TNFα, IL-6, and IL-8, driving a sustained inflammatory response. Moreover, arsenic-exposed cells displayed persistent DNA damage, as indicated by increased γ-H2AX foci, accompanied by nuclear structural alterations and elevated expression of cancer stem cell markers, including OCT2, CD133, and ALDH1. These findings suggest that arsenic-induced inflammation and genomic instability converge to promote a tumor-supportive microenvironment, highlighting the potential role of chronic arsenic exposure in ovarian carcinogenesis, particularly in the context of inflammation-driven carcinogenesis.
Chronic arsenic exposure of ovarian surface and fallopian tube cultures induces giant and/or multinucleated cells with phagocytosis-like properties and an inflammatory phenotype.
阅读:17
作者:Andrade-Feraud Cristina M, Acanda de la Rocha Arlet M, Berlow Noah E, Duque Santiago, Velazco Alexander, Castillo Diego, Holcomb Baylee, Coats Ebony R, Ghurani Yasmin R, Lucey Catherine M, Pearson Brandon, Guilarte Tomás R, Azzam Diana J
| 期刊: | Toxicology and Applied Pharmacology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jul;500:117394 |
| doi: | 10.1016/j.taap.2025.117394 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
