Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway.

阅读:5
作者:Huda Nazmul, Kusumanchi Praveen, Jiang Yanchao, Gao Hui, Thoudam Themis, Zeng Ge, Skill Nicholas J, Sun Zhaoli, Liangpunsakul Suthat, Ma Jing, Yang Zhihong
BACKGROUND: Chronic alcohol consumption leads to lipid accumulation, oxidative stress, cellular damage, and inflammation in the liver, collectively referred to as alcohol-associated liver disease (ALD). FAF2/UBXD8/ETEA (Fas-associated factor 2) is a ubiquitin ligase adaptor protein that plays a crucial role in the ubiquitin-mediated degradation of misfolded proteins in the endoplasmic reticulum. A recent genome-wide association study indicated an association between FAF2 and ALD; however, the exact contribution of FAF2 to ALD pathogenesis remains unclear. METHODS: FAF2 was knocked down using AAV-delivered shRNA in C57/BL6 mice. Mice were subjected to a chronic-plus-single binge ethanol feeding (NIAAA) model. Nine hours after gavage, liver, blood, and other organs of interest were collected for gene expression and biochemical analyses. RESULTS: We first observed a significant elevation in hepatic FAF2 protein expression in individuals with ALD and in mice subjected to an ethanol-binge model. Interestingly, knocking down FAF2 in the liver using adeno-associated virus serotype 8-delivered short hairpin RNA conferred a protective effect against alcohol-induced liver steatosis in ethanol-binged mice. Transcriptomic analysis revealed that differentially expressed genes were enriched in multiple lipid metabolism regulation pathways. Further analysis of transcription factors regulating these differentially expressed genes suggested potential regulation by SREBP1. Several SREBP1 target genes, including Fasn, Scd1, Lpin1, and Pcsk9 (proprotein convertase subtilisin/kexin type 9), were dysregulated in the livers of ethanol-fed FAF2 knockdown mice. Additionally, Pcsk9 could be regulated through the FOXO3-SIRT6 pathway in the livers of ethanol-fed FAF2 knockdown mice, leading to increased liver low-density lipoprotein receptor expression and reduced plasma LDL cholesterol levels. Furthermore, FAF2 knockdown in mouse liver enhanced adipose triglyceride lipase lipolytic activity by upregulating the adipose triglyceride lipase activator, comparative gene identification-58, and downregulating the adipose triglyceridelipase transport inhibitor, Elmod2, contributing to the alleviation of liver steatosis. CONCLUSIONS: Our study uncovers a novel mechanism involving FAF2 in the pathogenesis of ALD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。