Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments

线粒体活性氧是缺氧诱导的角蛋白中间丝降解所必需的

阅读:5
作者:Ni Na, Navdeep S Chandel, Juan Litvan, Karen M Ridge

Abstract

Hypoxia can cause stress and structural changes to the epithelial cytoskeleton. The intermediate filament (IF) network is known to reorganize in response to stress. We examined whether rats exposed to hypoxia had altered keratin IF expression in their alveolar epithelial type II (ATII) cells. There was a significant decrease in keratin protein levels in hypoxic ATII cells compared with those in ATII cells isolated from normoxic rats. To define the mechanisms regulating this process we studied changes to the keratin IF network in A549 cells (an alveolar epithelial cell line) exposed to 1.5% oxygen. We observed a time-dependent disassembly-degradation of keratin 8 and 18 proteins, which was associated with an increase in reactive oxygen species (ROS). Hypoxia-treated A549 cells deficient in mitochondrial DNA or A549 cells treated with a small interfering RNA against the Rieske iron-sulfur protein of mitochondrial complex III did not have increased levels of ROS nor was the keratin IF network disassembled and degraded. The superoxide dismutase (SOD)/catalase mimetic (EUK-134) prevented the hypoxia-mediated keratin IF degradation as did the overexpression of SOD1 but not of SOD2. Accordingly, we provide evidence that hypoxia promotes the disassembly and degradation of the keratin IF network via mitochondrial complex III-generated reactive oxygen species.-Na, N., Chandel, N. S., Litvan, J., Ridge, K. M. Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。