Nucleosome dynamics render heterochromatin accessible in living human cells.

阅读:2
作者:Prajapati Hemant K, Xu Zhuwei, Eriksson Peter R, Clark David J
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed. It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome. However, the evidence for this model derives primarily from experiments with isolated nuclei, in which chromatin remodeling has ceased, resulting in a static chromatin structure. Here, using a DNA methyltransferase to measure accessibility in vivo, we show that both euchromatin and heterochromatin are fully accessible in living human cells, whereas centromeric α-satellite chromatin is partly inaccessible. We conclude that all nucleosomes in euchromatin and heterochromatin are highly dynamic in living cells, except for nucleosomes in centromeric chromatin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。